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(1) The theorems in section 1 are essentially contained in a

thesis written under Professor Herman Rubin in 1963.

This

paper was partially supported by NSF G-2L500 and NASA NsG-568.

(2) Now at Northwestern University. ’




Introduction. A great deal of work concerning the quadratic variation
of a stochastic process has been done in the last few years.

The problems dealt with have taken the following forms

Let {x(t), F(t)s T} bea ;tochastic prc;cess on the
probability space ({1 , ¥, P) vhere T = [0,1], X(t) is F(t) measur-
able, and F(s)<c F(t)c F for s,teT with 8 < t. Let

LA {0 = tgn) < t](_n) < oee < tlgn) s 1} be a partition of [0,1]
n

for each n > 1. We assume LA is a refinement of wﬁv and

m;x(t:gg]). -tgn))-r O as n » . let

Al x(t§°)) = [x(tg‘},{) - X(t§n))]2. If {Y(t), F(t)3 €T} 1s a

stochastic process ., we let
5 (6) = 3, TES™) A? x(6{™)

means .sm out to the last j with 1) < t, and

where X 341

t

ee v, {01,

The problem is of course to determine when the limit of the

sequence of processes { Sn(t), F(t)s t¢ T} exist in probability,



elmost surely or in the mean, and © +  to find this limit when
it exists.

In this paper we assume the X process is a second order
martingale and Y 21, or Y 1is a sample continuous process. In
this case we obtain probability and in some cases mean limits.

The main theorems are theorem 1.1 and theorem l.2. These
1imit theorems are more general in some cases than those in [4] and
[6]. However, some of the limit theorems in [4] and [6] are stronger
in the sense that, due to the special nature of the processes
involved, cértain mean and ae.s. convergence is obtained where our
limits are in probability.

Section 1.

In this section we state some known results and develop the

body of the papere

Lemma 1.1 (3] Approximation theorem for sample continuous processes:

Let {X(t), F(t)s t¢ T] be an a.s. sample continuous process.




There is a sequence of stopping times {’Zv [ y 2 l} s such that
if {Xy(t), F(t); te T} is the X-process stopped at T, , then
i) each X, is sample equicontinuous and mifo@ bounded by V.
i1) There is a set /\c}, P(A) = 0, such that if wgA , then
there exists Y (o ) such that xy(t) = X(t) for all t¢T, if
y2 v(w)e
Lemma 1,2[1,2,3] Submartingale decompasition theorem:

Ir {x(t), F(t)s te T} 1is an aes. sample continuous submartingale,
then it has a unlgue decomposition,

P([X(t) = Ll(t) + Xz(t) for all t£T]) = 1

where Xl 1s an a.s. sample continuous martingale, X2 has aeSe
sample function monotone non~decreasing and continuous with

- (n) (n)
X,(t) = P 1in 5, E[AX(4) | F(8°DT,

if and only if

1im n P([ sup |X(t)] 2 n]) = 0.
n-> Q teT



In particular, if the X-process has a.e. sample function

non-negative, then the condition is always satisfied.

Note: The decomposition theorem was first proved by Meyer [2], and

the givén condition for a a.se. sample continuous. submartingale was
given by Johnson and Helms [2].
Let {X(t), F(t)s t ET] be an a.s. sample continuous second
order martingale. Let
z2(t) = [x(x)]1?
Then {Z(t), F(t)s t¢ T} is a non-negative sample continuous
submartingéle and hence by Lemmal.2,1t has the unique decomposition

P2z () = zl(t) + Zz(t) for all t:T]) =1

where 2, 1s a sample continuous martingale and 22 has ae.ce

1
sample function monotone non decreasing and continuous.

We observe that Z2(0) =0 aeSe

Theorem ls] With X and Z as just defined



1.ims, A? X(t(n))

5
zz(t) =f d Zz(t) E
[o]

liinz, E[A z(tgn)) ] F(t§n))]

(where leieme indicates 1limit in the mean).
Proofs

We observe that
E{Zt A? x(tgn))} = E{Zt E[ A2 X(t§n)) l F(t.:gn))]}

= E{zt E[Iz(t.gf{) - X‘(t§n)) lF(t;n))]}

- 2 {z, B8z | s3]
£ {zt E[Azz(t§n)) | F(td(n))]}
- E{Z AZ (t(n))} E{z (t(“)) -3 (0)}
g B%21Yy
- Efz (t(n) } » vhere tj(:) is the last t§n) < te
Then, since a.e. sample function of the Zz-process 1s monotone

nondecreasing, Z, (t(n)) t Z, (t) a8 n 9 oo, and the monotone

convergence theorem i1s applicable, Hence, for each t:t T,

2 (n)y] (n) (n)
niu; Efz, A X(t; )} nin:oz{z B[ A2(t, )IF(t )}

=2{z,(t)] .
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Since the sequences are non-negative, it is sufficient [see Halmos ['}],13.112]
to show. ;.‘he probability limits exist and are as stated in the
theorem. From lemma 1.2 however, we have
P iim 3, E[Az(tgn)) IF(tgn))] = zé&).
We now establish that

P lim 5, A2 x(t§“)) = P 1in 5, E[ Az(tj(“)) | F(tj(n))]

let { xy(t), F(t)s t ET} be the sequence of processes as
given in Lemma l.1l.Then each Xy is a wniformly bounded, ae.s.
sample equicontinuous martingale. Letting Z, = X?, we have the
decompésitién Zy = Zlv + ZZI’ as given by lLemma le.2e0 that for
each J> 1,

Zzy(t) =P lim %, E[Azp(tj(n))\ F(tgn))].
Consider now
e |z, a0 5,6 - Bz, 68 | ra{)] 2
-t {|z, a%zx, (t§“)) - B[ A% X,(tj(n))\l‘(tgn))] | ’}

-E 1|z, A% x‘,(t§“)) - B[ A? x,(t§“)) | F(t§n))]”
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< E{zt At xv(tgn))} _<_E{m§x A? xy(tgn)) T A2 x,(t§”))}

£ E{ | x() - x(0) | 3} , where

A

Zn = essﬁup. m§x A2 xv(tgf_!))' 5 0

as n < o0 because of the uniform sample equicontinuity of the L,
processe
Thus for any V> 1,

P lin 2, A? xy(t§“)) =Plimnz E[AZ (tgn)) \ F(tagn))]
= sz("’)’
It is easu;} established [3], that P lim Z,,(t) = Z,(t) for all
te¢T, and that
P lim 5, A* xy(t:g“)) =z, 4° X(t§n))
the convergence being uniform in n. It follows that

P lim %, A? X(t§n)) = P lim Z, () = 2,(t)

and the theorem is completed.

D ion
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A process {X(t), F(t)§ te T} is called a quasi-martingale

if there exist processes {Xi(t), F(t)s t¢ T} s 1 =1, 2, such
that

P([x(t) = xl(t) + Xz(t) for all téT]) =1

vwhere Xl is a martingale and X2 has a.e. sample function of
bounded variation (beve) on T.

Corollary lel If X is a quasi-martingale with Xl a sample
continuous second order martingale and X2 “having a.e. sample

function continuous, and if

Z(t) = xi (t) = Zl(t) + Zz(t)

is ay defined previously

(n)y _
Plim T, A2 X(tj ) = Zz(t)

We have
P 1in 3, A? X(tj”)) = P lin 3, A? X1('°J(n))' + P lin 3, A2 xz(tj(“))

+P lin 3, Axl(tgn)) sz(t§“))-

2, (s)



0

Theorem l,2:
et X be a quasi-martingale satisfying the condition of
gorollaryl.],and let Z(t) = Xi(i.;) = Zl(t) + Zz(t) be as given
there. If {I(t), F(t); 1 1 T} is aes. sample céntinuous, then
P lim %, Y(t§n))A2 x(t§“)) fa (1.1)

t
R 5\ Y(s) d Zz(s) =
° . P ln %, I(t§n)) E[AZ(t§n)) \ F(tgn))] (1.2)

vhere Rj denotes the ordinary Riemann-Stieltjes integral which
exists a.se. under the stated conditions.

Proof: It is clear from Theoremliland ?orollarylilthnt if either
of the probability limits exist, then so does the other and they

are equale Hence it is sufficient to show that

t
. ( (
R rj’ I(s) d Zy(s) = P Lim =, Y(tjn)) E[AZ(tjn)) |F(t§n))]

(n) (n) (n)
P lim 2, Y(tJ“ ) Iii[t\Zz(’c..,’1 )lF(tJn )]

1) Assume Y and Z, are unifornly bounded, then
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e {l5, 16 (02,6 - 24z, | rs1 | 2]
= x{zt |r(t§“))|= 'Azz(tgn)) - E[AZZ(tgn)) 1 F(t§n))]} ’}
< ¥ B{z, A* 2,60}

<KE {m?x \Azz(tf‘))]' z | Azz(t§“))\}
=M E im:;x | 2,65 | z2(1)]

But this expression goes to zero a8 n 9 oo because of the uniform

boundedness and continuity of ZZ'

2) We now observe that if X 1s X stopped at T, as given
in Lemmaldl,then Xv is again a quasi-martingale with X v = xlv + X2 Y,

where Xiv is Xi stopped at T, « Also

Xy =2, =2y * 2y

vhere Z,, 1s Z, stopped at Ty o
Thus if Xy‘ and Y, are X and Y stopped at T, , what
 has been proved in 1) gives us the desired result for each X, and

Y,. The result now follows from the approximatione
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Note: one can show that (1.1) holds even if tgn) is replaced by
£§“) with tj(n) < g{m) <®) gimply by using the continuity

J 3+l

of the Y-processe

Section 2: OSome applicationa
We let {V(t), F(t)s te T} be a Brownian motion process.
t
We will denote by D 5 §(a,n) W(d 8y®). the stochastic integral
)
as defined in [5].
lemma 241¢ (Theorem 5.3, page 449, Doob),
Let {X(t), F(t)s tt'l‘} be a second order a.s. sample contin-
uous martingale. If there is a measurable, a.s. positlve process

{Q (t)y F(t)s tt T} such that for tl,tzi‘l‘ with t1< t2

E {’\X(tz) - x(tl)\zl F(tl)}

t2
= E(i l :5;_ (t,m)\2 d % \F(tl)) 8eS.
1

then there is a Brownian motion process {W(t), F(t)s t iT} such

that
.
X(t) = X(a) +D S§ (syw) W(d 8y®) aes.
o




From this theorem and what we have proven in asection 1, we get
the following theorem.
Theorem 2,1: Let {X(t), F(t)s ‘bf-‘l'} be a msecond order a.s. sample

continuous martingale. Let X2 =Z =Z + Z_ be the decomposition

1 2
of X? as given in Lemma 1.,2,If for a.e.w, Zz(t) is absolutely

d

continuous we.r.t. Iebesgue measure, and if Zg(t) =
dt

2'.2 (t) is
a.8. positive (it is a.s. non-negative). then there is a Brownian

motion process {W(t), F(t)s ttT} such that

t
X(t) = X(0) + DS A CTYS) )]%H(d By ) aeSe
)

1131395'22(1;)' é"mmzﬁAzx(t‘gn)), we can choose a sequence of
partitions such that

Z,(tyw) = awse lin I, A? x(t§“)).

and one may ask if Zz(t,ab) is always absolutely continuous W.r.t.
Lebesgue measure. However if one takes a Brownian motion process
with Var(X(t)) = C(t), where C(t) is the Cantor function, and

X(0) = O ae8ey then the resulting Zz(t) is just C(t)e One may




-
0

have some difficulty proving directly that if G(t) = lim Z Azg(t§n)).
where g(t) is continuous, then G(t) need not be absolutely con-
tinuous wer.te Lebesgue measure. In [4] and [6], the limit Zz(t,n))
is always a.8. sample absolutely continuous wer.t. Lebesgue measure
because the martingale processes consldered are exactly those given
in Lemmma Z2ele

With Theorem 2.1 we obtain a theorem similar to that proved in

[6]e

Theorem 2.2  Assume that [X(t), F(t)s tiT} is a diffusion process

given by the integral equation

t t
X(t) = X(0) +\$ m[s,X(s)]ds + D 56’[3,X(s)]W(ds,w)
0 o

where W(t) is a Brownian motion processe
Then

' %
a) P lim Zy A? X(tgn)) = ja*[a,x(s)]ds and
o]

b) if {Y(t), F(t); tzT} is an a.s. sample continuous process
t

P lim I, Y(t§n)) A? X(tj(n)) = _f Y(s) g*[s,X(s)]ds.

o]
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Proof:

We need only observe that X 18 a quasi-martingale satisfying
the conditions of corollary l.1 with

t t
X (6) =D J @ ls, X(s)] W@ 8, @), Ty(8) = X(0) + [ mls,X(e)]a 5.

~
v

As was shown in [6], the limit in 2) is actually in %he nean
if one uses the sufficient conditions on m(erse)and @(e 5 o)
given in [5] to insure the existence of a solution of the diffusion

equation.
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